(09-23-2023, 08:21 PM)Jim Mac Wrote: Well I believe Overunity and prefer that term. I really have no care what the scientific community believe and accept. if they don't want to be associated with a site like this- good riddance..
Energy is all around us. We are swimming in a vast pool of energy every moment. There is enough energy in 1 pencil to destroy the world 1000 times over.. Just Separate the pencil into atoms and split them..
We are not creating the energy, just as we are not creating the water. It has always been here.. And once we use it, is goes back into the aether to be used again someday.
Just like the water. We drink it but it eventually makes it's way back to the ground to someday be used again and again.
We do not "convert" work into energy.. We do "work" to create the pathway or conduit through which energy flows. We do work to create an imbalance..
A lot of food for thought.
I've reached the same, or similar conclusions in observing and trying to figure out how a Stirling heat engines works.
I've likened it to having a car run out of gas in a valley between two hills in a U shape.
Push the car up one side. (Like an expanding gas pushing a piston against atmospheric pressure. The more atmosphere displaced the steeper the climb.)
It takes "work" to push the car up and up...
Then the person (gas) pushing the car loses strength and collapses, can no longer push the car and lets go. What happens? The car stops right?
No it doesn't just stop it rolls back down at higher speed then gets to the bottom and stops, right?
No, it zooms past the starting point and right up the other side like a rocket.
The first push up the hill on the right-hand side is "expansion". The return, rocketing past equilibrium at the bottom of the hill effects "compression".
So then the car ends up with an oscillation. the hill on the right is expansion. The hill on the left compression.
"Gravity" in the hill analogy is replaced by pressure.
The "ideal gas law" and 2nd Law science thermodynamics types argue that NO, the expanded gas in the first instance will leave the car stalled on the side of the first hill on the right. To get the car (piston) to return back down the heat thet expanded the gas and pushed it out must be removed.
They believe or have been taught that the "heat" that pushed the car up the hill will hold the car, or keep the piston out, not allowing it to return to "complete the cycle"
The "laws" of thermodynamics say: for a full cycle, not only does heat have to be added to expand the gas to drive out the piston, but the heat then MUST be removed to get it out of the way otherwise the piston will never return. The car will never roll back down the hill, like the guy who pushed it up there and collapsed in exhaustion got under the wheel like a chuck. The guy under the wheel representing heat that must be removed to a "sink". Or worse, there is a solid mass holding up the car all the way down to the valley.
Well, I can see the point. Expand a gas with heat to push a piston, then the gas has to be "un-expanded" with cold, removing heat for the piston to return. Yes that makes sense and seems perfectly logical but watch a Stirling engine operate and you will see something different; an oscillation.
I don't know if the heat is "converted" exactly, or what, but the heat in a Stirling engine is intermittent, pulsed. A little heat is added suddenly, which starts the oscillation.
The parallels to an oscillating electrical circuit seems obvious but I can't say I've actually wrapped my head around it all.
All I know is the usual explanations are either outright wrong or don't apply to a Stirling engine.
My pushing a car up a hill and letting it go is just an analogy groping for a better understanding of what I've been observing.
It is as though the sudden expansion throws or catapults the "car" up the hill FURTHER than the heat could actually push it if it were only expanded gradually.
This sudden expansion causes an "overextension" or expansion of the gas a little MORE due to momentum.
As if the guy pushing the car up the hill gave one last shove before collapsing. That is, the gas expands a little extra causing the heated expanded gas to cool down. The car continues up the hill by momentum a certain distance before rolling back down and right up the other hill.
Anyway, just NOT getting stuck on the side of the first hill seems beyond what the laws of thermodynamics allows.
I think the "displacer" in a Stirling engine does not "MOVE" heat from the hot to the cold side, rather it acts as a "heat valve" to intermittently pulse heat into the engine at just the right time to reinforce and strengthen the oscillation.
So what happens when instead of pushing up hill you instead dig a hole?
Let the car roll down into the hole and back up the other side.
You are now at a high position and adding energy to the oscillation is an easy downhill push from either side.
As Tesla wrote: "by expending initially a certain amount of work to create a sink for the heat or, respectively, the water to flow in, a condition enabling us to get any amount of energy without further effort."
The "system" is now operating below the ambient baseline, so, theoretically, we then simply need to "pulse" the abundant ambient energy into the oscillation effortlessly.
I can run a Stirling engine on ice (really ambient heat). But I haven't thought much about what the electrical equivalent of "ice" might be.